S7-200 Tip
Modbus RTU Slave
Tip No. 41

	Group
	
	Topic

	
	
	

	3
	
	Modbus RTU Slave for S7-200

	
	
	

	CPUs required for this tip

	CPU 210 (
	CPU 212 (
	CPU 214 (
	CPU 215 (
	CPU 216 (
	OTHER (

Overview
This program example includes a group of subroutines and interrupt routines which create a Modbus RTU slave using the Freeport functions of the S7-200. This program supports Modbus functions :

1
Read outputs (coils)

2
Read inputs (contacts)

3
Read holding registers (V memory)

4
Read input registers

5
Write single output

6
Write single holding register

15
Write multiple outputs

16
Write multiple holding registers

Address 1

Address 2

Address 3

Address 4

Figure 41.1

Structure of Program
The Modbus protocol driver consists of a group of subroutines and interrupt routines which initialize and process the Modbus requests. There are two other networks neccesary in the user's main program. One network initializes the Modbus drivers on the first scan. The other network checks an M bit and processes a Modbus request if present. This second network should be placed near the end of the user's main program (just before the MEND) so that data is only changed at the end of the scan.

The subroutines and interrupts used are:

SBR 50

Initialize the Modbus RTU driver

SBR 51

Process a Modbus request and transmit the response

SBR 52

Process Modbus functions 1 and 2

SBR 53

Process Modbus functions 3 and 4

SBR 54

Process Modbus function 5

SBR 55

Process Modbus function 6

SBR 56

Process Modbus function 15

SBR 57

Process Modbus function 16

SBR 61

Generate error response two

SBR 62

Initialize CRC table

SBR 63

Calculate CRC

INT
 120
Handle quiet line timeout

INT
 121
Handle characters while waiting for a quiet line timeout

INT
 122
Receive first character (address field) of request

INT
 123
Receive remainder of request

INT
 124
Terminate request after quiet line timeout

INT
 125
Reset quiet line search after transmit complete

Description of the Program
This program allows one or more CPU 214s to be connected to a Modbus host. The program uses the CPU 214’s Freeport functions to implement the Modbus RTU protocol. Modbus RTU is a master-slave protocol; this means that a network configuration consists of one master (a host computer) and one or more slave devices. Each slave devices has a different address. The master sends a request to one of the slaves and then waits on the response from that slave. The slave will respond that the request was accepted or that there was an error. If the request was not received correctly, that is, there was a transmission error such as parity or a bad CRC (checksum), the slave will not respond, and the master must resend the request after waiting an appropriate time.

Modbus RTU is a binary protocol. The start of a message is denoted by a quiet time on the line for 3.5 byte time at the current baud rate. The end of the message is also denoted by the same quiet time on the line. Since the quiet line time is a multiple of character times, it will vary depending on the baud rate. The program described below sets the quiet line time to a value corresponding to 9600 baud. If the baud rate is changed, the quiet line time must also be changed. This is described in SBR 50.

Modbus RTU protocol transmits data in 8 bit binary characters. Each character also includes one start bit, one or two stop bits (the CPU 214 provides one stop bit) and an optional parity bit. The program described below sets the CPU 214 for 9600 baud with even parity. This may be changed by modifying the port setup in SBR 50.

Modbus RTU protocol uses a CRC (Cyclical Redundancy Check) to provide error detection. This application utilizes a table of CRC values to speed the calculation of the CRC when checking a received message and transmitting the response. This CRC table is generated in upper V memory during the initialization of the Modbus driver and requires about 700 milliseconds. This will occur on the first scan only.

Subroutines to support Modbus functions 1, 2, 3, 4, 5, 6, 15 and 16 are provided. If a particular master does not utilize all of these functions, they may be removed to provide more program space for the user program. To remove a function, remove the supporting subroutine and the call to that subroutine. The calls are all in SBR 51.

The functions supported via subroutines are:

1
Read single/multiple coil (output) status

Returns on/off status of any number of outputs (Q). The maximum number of

outputs may be specified by the user (see below).

2
Read single/multiple input status

Returns on/off status of any number of inputs (I). The maximum number of

inputs may be specified by the user (see below).

3
Read single/multiple holding registers

Returns contents of V memory. Holding registers are considered to be word

values under Modbus and that concept is used here. This area starts at V0. The

size (in words) can be specified by the user (see below).

4
Read single/multiple input registers

Read analog inputs. This function actually just returns the contents of a V

memory area separate from the holding registers. The user must add program

commands to read AI words and move them to V memory if desired. The V memory

area used by this command can be specified by the user (see below).

5
Force single coil (output)

Write to the output (Q) image register. The output is not really forced, just written.

6
Write singe holding register

Write a word to V memory.

15
Force multiple coils (outputs)

Write to multiple outputs (Qs). The starting output must begin on a byte boundary

(i.e. Q0.0 or Q2.0) and number of outputs written must be a multiple of eight. This

is not required under Modbus but was done here to simplify the implementation.

The output is not really forced, just written to the output image register.

16
Write multiple holding registers

Write multiple words to V memory. Up to 60 words can be written in one request.

The following memory locations are utilized to configure the Modbus driver. These locations are initialized in SBR 50 and may be modified by the user to change the size of the memory areas available via the Modbus driver to a host computer.

VW3290

Maximum number of inputs/outputs accessible via Modbus. This affects the

range of functions 1, 2, 5 and 15. The default is 64 (I0.0 to I7.7 and Q0.0

to Q7.7).

VW3294

Maximum number of input registers accessible via Modbus function 4. The

default is 16.

VW3296

Address in V memory where AI are to be read when responding to Modbus

function 4. The default value is VB2000.

VB4095

Modbus address of the slave. The default value is address 1.

The following V memory locations are used by the Modbus driver and are not to be modified by the user.

M31.7

Flag used to signal a Modbus request has been received.

VB3300 - VB3559
Comm buffer

VB3560 - VB3575
Misc. scratch memory for Modbus

VB3580 - VB4091
CRC data table

Subroutines 50 - 63 are reserved for the Modbus driver.

Interrupts 120 - 127 are reserved for the Modbus driver.

Labels 254 and 255 are reserved for the Modbus driver.

The program size is 606 words.

	LAD (S7-MicroDOS)
	STL (IEC)

	
	

	Main Program
	

	
	// Call a subroutine to initialize the Modbus comm if this is the first scan.

// This rung should be placed somewhere near the top of the ladder program.

	 │ SM0.1 50

1 ├─┤ ├──(CALL)

 │

	
	LD
SM0.1
// If this is the first scan,

CALL
50
// initialize the Modbus comm

	
	// Check to see if a Modbus request has been received. If one has, the receive

// interrupt routine sets M31.7.

// This rung should be somewhere near the end of the ladder program.

	 │

 │ M31.7 51

2 ├─┤ ├───┬────────────(CALL)

 │ │

 │ │ M31.7 K1

 │ └────────────(R)

 │

 │

3 ├──(MEND)

 │

	
	LD
M31.7
// If Modbus request present,

CALL
51
// call the handler &

R
M31.7, 1
// clear request flag

MEND

	Subroutines
	

	
	// Subroutine 50

//

// Initialize the Modbus driver on port 0.

// NOTE:
This initialization routine will require approximately 690 mSecs to execute due to the

//
initialization of the CRC table.

	┌──────────┐

│ SBR: 50 │

└───┬──────┘

 │ SM0.0 MOV_W───┐

5 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ K65┤IN OUT├VW3290

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K1001┤IN OUT├VW3292

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K17┤IN OUT├VW3294

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_DW──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ &VB2000┤IN OUT├VD3296

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K8┤IN OUT├VW3574

 │ │ │ │

 │ │ └───────┘

	
	// Initialize the memory limits for the various data type.

//

// NOTE:
The maximum values stored should be one greater than the actual limit.

//
Example: To allow 32 outputs, use a value of 33.

SBR
50

LD
SM0.0

MOVW
65, VW3290
// max_IR = 64 bits

MOVW
1001, VW3292
// max. V words = 2000 bytes (1000 words)

MOVW
17, VW3294
// max. AI words = 16 words

MOVD
&VB2000, VD3296
// start of AI words in V memory

MOVW
8, VW3574
// load a constant value = 8 to be used in

// mathmatical operations

	 │ │ MOV_B───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K1┤IN OUT├VB4095

 │ │ │ │

 │ │ └───────┘

	
	// Initialize the Modbus address.

MOVB
1, VB4095
// Modbus address = 1

	 │ │ MOV_B───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ KH49┤IN OUT├SMB30

 │ │ │ │

 │ │ └───────┘

 │ │ 62

 │ ├────────────(CALL)

 │ │

 │ │ M31.7 K1

 │ ├────────────(R)

	
	// Initialize the port. See the S7-200 System Manual for other port configurations (i.e. baud rate, parity).

// RTU Modbus requires the use of eight data bits. The baud rate and parity may be changed.

//

// NOTE:
Setting the baud rate to 38.4K Baud will not function correctly.

MOVB
16#49, SMB30
// 9600 baud, 8 bits, even parity

// Initialize the CRC data table and reset the message pending flag.

CALL
62
// initialize the Modbus CRC table

R
M31.7, 1
// show no messages pending

	 │ │

 │ │

 │ ├────────────(ENI)

 │ │

 │ │ MOV_B───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K6┤IN OUT├SMB34

 │ │ │ │

 │ │ └───────┘

 │ │ ATCH────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K120┤INT │

 │ │ K10┤EVT │

 │ │ └───────┘

	 │ │ ATCH────┐

 │ └────────────┤EN │

 │ │ │

 │ K121┤INT │

 │ K8┤EVT │

 │ └───────┘

 │

6 ├──(RET)

 │

	
	// The Modbus messages are delineated by a quiet line for at least 3.5 byte times which at 9600 baud

// is 4 milliseconds. The quiet line time is set to 6 mSecs to guarantee at least 5 mSecs (4 mSecs quiet

// line time + 1 mSec to receive a character).

//

// NOTE: This timeout must be changed for different baud rates. The times are:

//

//
300 baud
166 mSec

//
600
84

//
1200
43

//
2400
22

//
4800
12

//
9600
6

//
19.2K
5

ENI

// enable interrupts

MOVB
6, SMB34
// set quiet line timer for > 5 msec

ATCH
120, 10
// start search for quiet line

ATCH
121, 8
// INT 121 if we get a character

RET

// return

	
	// Subroutine 51

//

// This subroutine processes the Modbus requests during the regular ladder scan.

//

// Calculate the CRC on the received message. When the CRC in the received message is included in

// the calculation, the result should always be a zero if there were no errors.

	┌──────────┐

│ SBR: 51 │

└───┬──────┘

 │ SM0.0 MOV_W───┐

8 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ VW3300┤IN OUT├AC0

 │ │ │ │

 │ │ └───────┘

	 │ │ MOV_DW──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ &VB3302┤IN OUT├AC1

 │ │ │ │

 │ │ └───────┘

 │ │ 63

 │ └────────────(CALL)

 │

 │ K0 AC2 255

9 ├───────┤ == W ├──────────┤NOT├──────────────────────────────(JMP)

 │

	
	SBR
51

LD
SM0.0

MOVW
VW3300, AC0
// get buffer length

MOVD
&VB3302, AC1
// get buffer address for CRC check

CALL
63
// calculate CRC

LDW=
0, AC2
// If (calculated CRC != 0),

NOT

JMP
255
// load an error

	
	// The message looks good, so decide which Modbus function is being requested.

// The jump instruction following the call will always execute after the call returns

// since the subroutines will always set TOS to a 1 before returning.

	 │ SM0.0 MOV_B───┐

10 ├─┤ ├──┤EN │

 │ │ │

 │ VB3303┤IN OUT├AC0

 │ │ │

 │ └───────┘

 │ K1 AC0 52

11 ├───────┤ == B ├────────────────────────────────┬────────────(CALL)

 │ │

 │ │ 254

 │ └────────────(JMP)

 │

 │ K2 AC0 52

12 ├───────┤ == B ├────────────────────────────────┬────────────(CALL)

 │ │

 │ │ 254

 │ └────────────(JMP)

 │

 │ K3 AC0 53

13 ├───────┤ == B ├────────────────────────────────┬────────────(CALL)

 │ │

 │ │ 254

 │ └────────────(JMP)

 │

	 │

 │ K4 AC0 53

14 ├───────┤ == B ├────────────────────────────────┬────────────(CALL)

 │ │

 │ │ 254

 │ └────────────(JMP)

 │

 │ K5 AC0 54

15 ├───────┤ == B ├────────────────────────────────┬────────────(CALL)

 │ │

 │ │ 254

 │ └────────────(JMP)

 │

 │ K6 AC0 55

16 ├───────┤ == B ├────────────────────────────────┬────────────(CALL)

 │ │

 │ │ 254

 │ └────────────(JMP)

 │

 │ K15 AC0 56

17 ├───────┤ == B ├────────────────────────────────┬────────────(CALL)

 │ │

 │ │ 254

 │ └────────────(JMP)

 │

 │ K16 AC0 57

18 ├───────┤ == B ├────────────────────────────────┬────────────(CALL)

 │ │

 │ │ 254

 │ └────────────(JMP)

 │

 │ SM0.0 MOV_W───┐

19 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ K3┤IN OUT├VW3300

 │ │ │ │

 │ │ └───────┘

 │ │ WOR_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ KH80┤IN1 OUT├VW3302

 │ │ VW3302┤IN2 │

 │ │ └───────┘

 │ │ MOV_B───┐

 │ └────────────┤EN │

 │ │ │

 │ K1┤IN OUT├VB3304

 │ │ │

 │ └───────┘

	
	LD
SM0.0

MOVB
VB3303, AC0
// get the function from the request buffer

LDB=
1, AC0
// is this function 1?

CALL
52
// ...yes so service it

JMP
254
// ...then jump to the end

LDB=
2, AC0
// is this function 2?

CALL
52
// ...yes so service it

JMP
254
// ...then jump to the end

	
	LDB=
3, AC0
// is this function 3?

CALL
53
// ...yes so service it

JMP
254
// ...then jump to the end

LDB=
4, AC0
// is this function 4?

CALL
53
// ...yes so service it

JMP
254
// ...then jump to the end

LDB=
5, AC0
// is this function 5?

CALL
54
// ...yes so service it

JMP
254
// ...then jump to the end

LDB=
6, AC0
// is this function 6?

CALL
55
// ...yes so service it

JMP
254
// ...then jump to the end

LDB=
15, AC0
// is this function 15?

CALL
56
// ...yes so service it

JMP
254
// ...then jump to the end

LDB=
16, AC0
// is this function 16?

CALL
57
// ...yes so service it

JMP
254
// ...then jump to the end

LD
SM0.0
// if none of the above...

MOVW
3, VW3300
// load length for error response

ORW
16#0080, VW3302
// set the MSBit of function to show error

MOVB
1, VB3304
// load "function not supported" code

	
	// The function has been serviced so calculate the CRC on the response and

// start the transmit of the response. Like the request, the length of the response

// will be in the first word of the buffer. This length will not include the CRC length

// and must be incremented by two before calling the transmit box.

	┌──────────┐

│ LBL:254 │

└───┬──────┘

 │ SM0.0 MOV_W───┐

21 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ VW3300┤IN OUT├AC0

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_DW──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ &VB3302┤IN OUT├AC1

 │ │ │ │

 │ │ └───────┘

	 │ │ 63

 │ ├────────────(CALL)

 │ │

 │ │ MOV_DW──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ &VB3302┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3300┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC2┤IN OUT├*AC3

 │ │ │ │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K2┤IN1 OUT├VW3300

 │ │ VW3300┤IN2 │

 │ │ └───────┘

 │ │ XMT─────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VB3301┤TBL │

 │ │ 0┤POR │

 │ │ └───────┘

 │ │ ATCH────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K125┤INT │

 │ │ K9┤EVT │

 │ │ └───────┘

 │ │

 │ └────────────(CRET)

	
	LBL
254

LD
SM0.0

MOVW
VW3300, AC0
// get the length

MOVD
&VB3302, AC1
// get buffer address for CRC check

CALL
63
// calculate CRC

MOVD
&VB3302, AC3
// get address of buffer start

+I
VW3300, AC3
// point to end of buffer

MOVW
AC2, *AC3
// put the CRC in buffer

+I
2, VW3300
// add two bytes for CRC

XMT
VB3301, 0
// transmit the response

ATCH
125, 9
// goto INT 125 when xmit complete

CRET

	
	// Error handler for CRC or length problems.

//

// There is not really much to be done in the cases where the CRC indicates an

// error or if not enough bytes were received to process a message, except

// to just reset the comm to look for the next message and let the master time

// out on this one.

	┌──────────┐

│ LBL:255 │

└───┬──────┘

 │ SM0.0 ATCH────┐

23 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ K120┤INT │

 │ │ K10┤EVT │

 │ │ └───────┘

 │ │ ATCH────┐

 │ └────────────┤EN │

 │ │ │

 │ K121┤INT │

 │ K8┤EVT │

 │ └───────┘

 │

24 ├──(RET)

 │

	
	LBL
255

LD
SM0.0

ATCH
120, 10
// start search for quiet line

ATCH
121, 8
// INT 121 if we get a character

RET

	
	// Subroutine 52

//

// This subroutine supports Modbus functions 1 and 2 by reading the status of one or

// more outputs or inputs. The bits in the response are packed eight bits per byte.

// The first requested output/input will be in the LSBit of the first data byte. If the

// number of requested outputs/inputs is not divisible by eight, the MSBits of the

// last data byte are to be filled with zeros, but this is not currently done.

//

// The format for the request is:

// addr 01 start_bit (MSB,LSB) bit_count (MSB,LSB)

//

// The start_bit is the first output/input requested (zero based).

// The bit_count is the number of outputs/inputs requested.

//

// The format for the response is:

// addr 01 byte_count data.....

	┌──────────┐

│ SBR: 52 │

└───┬──────┘

 │ SM0.0 ADD_I───┐

26 ├─┤ ├──┤EN │

 │ │ │

 │ VW3304┤IN1 OUT├AC0

 │ VW3306┤IN2 │

 │ └───────┘

 │ SM1.1 61

27 ├─┤ ├─┬───────────────┬───────────────────────┬────────────(CALL)

 │ │ │ │

 │V3304.7│ │ │

 ├─┤ ├─┤ │ └────────────(CRET)

 │ │ │

 │V3306.7│ │

 ├─┤ ├─┘ │

 │ │

 │ AC0 VW3290 │

 ├───────┤ >= W ├────────┘

	
	// Check to see if the max. number of outputs or inputs has been exceeded.

SBR
52

LD
SM0.0

MOVW
VW3304, AC0
// get the start_bit value

+I
VW3306, AC0
// ...plus the bit_count

LD
SM1.1
// if (overflow) or

O
V3304.7
// (start_bit < 0) or

O
V3306.7
// (bit_count < 0) or

OW>=
AC0,VW3290
// (last_bit_ number > max_IR)

CALL
61
// build error response

CRET

// return

	
	// Determine which area we are working with and then copy either the inputs or

// outputs to a scratch area within the comm buffer (but not used in this response),

// and set the following byte to zero. This allows the method of shifting

// used in the next section to work properly.

//

// NOTE:
This is set up for an image register size of 8 bytes. If the image

//
register size changes to greater than 8 bytes, the constant on the

//
block move instruction must be changed.

//

// Get the start_bit number and determine the address of the first byte to copy.

// After the divide, the value in VW3560 is the remainder (shift count) and

// the value in VW3562 is the quotient (byte offset into outputs or inputs).

	 │ K1 VB3303 MOV_DW──┐

28 ├───────┤ == B ├────────┬────────────────────────────────────┤EN │

 │ │ │ │

 │ │ &QB0┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_DW──┐

 │ └─┤NOT├──────────────────────────────┤EN │

 │ │ │

 │ &IB0┤IN OUT├AC3

 │ │ │

 │ └───────┘

 │ SM0.0 BLKMOV_B┐

29 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ *AC3┤IN OUT├VB3340

 │ │ K8┤N │

 │ │ └───────┘

 │ │ MOV_B───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K0┤IN OUT├VB3348

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_DW──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ &VB3340┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

 │ │ DIV─────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3304┤IN1 OUT├VD3560

 │ │ VW3574┤IN2 │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3562┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3306┤IN1 OUT├AC1

 │ │ K7┤IN2 │

 │ │ └───────┘

 │ │ SHR_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC1┤IN OUT├AC1

 │ │ K3┤N │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC1┤IN1 OUT├VW3300

 │ │ K3┤IN2 │

 │ │ └───────┘

	 │ │ MOV_B───┐

 │ └────────────┤EN │

 │ │ │

 │ AC1┤IN OUT├VB3304

 │ │ │

 │ └───────┘

	
	LDB=
1,VB3303
// if function 1 (outputs)

MOVD
&QB0, AC3
// then point to outputs

NOT

// else

MOVD
&IB0, AC3
// point to inputs

LD
SM0.0

BMB
*AC3, VB3340, 8
// copy inputs/outputs to scratch area

MOVB
0, VB3348
// zero out the "next" byte in scratch area

MOVD
&VB3340, AC3
// source pointer = addr of the scratch area

MOVW
VW3304, VW3562
// get the start_bit value

DIV
VW3574, VD3560
// start_bit / 8

+I
VW3562, AC3
// add offset to source pointer

// Get the bit_count and determine the number of bytes we need to send back in the response.

MOVW
VW3306, AC1
// get the bit_count

+I
7, AC1
// round it up

SRW
AC1, 3
// divide by 8 bits/byte

// Load the response buffer size and the byte_count into the response buffer.

MOVW
AC1, VW3300
// get the byte_count

+I
3, VW3300
// add three bytes for header

MOVB
AC1, VB3304
// load byte_count

	
	// Get the data from the image register, shift it into position and place it in the response buffer.

//

// The method used is to fetch a word of image register with the byte we really want

// in the MSByte of the word. The word is rotated for shift_count number of bits.

// This shifts the LSBits of the "next" IR byte into the MSBits of the byte we want.

// When the shift is complete, we get the byte into the LSByte of the word with a swap

// instruction and then move the byte into the response buffer.

	 │ SM0.0 MOV_DW──┐

30 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ &VB3305┤IN OUT├AC2

 │ │ │ │

 │ │ └───────┘

 │ │ FOR─────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3562┤IDX │

 │ │ │ │

 │ │ K1┤ITL │

 │ │ │ │

 │ │ AC1┤FNL │

 │ │ └───────┘

 │ │ ROR_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ *AC3┤IN OUT├AC0

 │ │ VB3561┤N │

 │ │ └───────┘

 │ │ SWAP────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC0┤IN │

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_B───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC0┤IN OUT├*AC2

 │ │ │ │

 │ │ └───────┘

 │ │ INC_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC2┤IN OUT├AC2

 │ │ │ │

 │ │ └───────┘

 │ │ INC_W───┐

 │ └────────────┤EN │

 │ │ │

 │ AC3┤IN OUT├AC3

 │ │ │

 │ └───────┘

 │

31 ├──(NEXT)

 │

 │

32 ├──(RET)

 │

	
	LD
SM0.0

MOVD
&VB3305, AC2
// load pointer to response buffer

FOR
VW3562, 1, AC1
// for byte_count bytes

MOVW
*AC3,AC0
// get a word of outputs

RRW
AC0, VB3561
// shift it right

SWAP
AC0
// move the byte to the LSByte

MOVB
AC0, *AC2
// store the byte

INCW
AC2
// increment buffer pointer

INCW
AC3
// increment image register pointer

NEXT

// end for

RET

	
	// Subroutine 53

//

// This subroutine supports Modbus function 3 (read output/holding registers)

// and function 4 (read input registers). The output/holding registers are

// considered to be V memory in this PLC. The input registers are considered

// to be analog inputs.

//

// NOTE:
The analog inputs are not directly read by this routine since the PLC

//
will not allow indirect access to the analog values. The analog inputs

//
are read starting from the V memory location specified in VD3296. This

//
location should be set up in the initialization subroutine. It is the user's

//
responsibility to move the analog data into the V memory.

//

// The format for the request is:

//

// addr 03 start_word (MSB,LSB) word_count (MSB,LSB)

//

// The start_word is the first word requested (zero based).

// The word_count is the number of words requested.

//

// The format for the response is:

//

// addr 03 byte_count data

	┌──────────┐

│ SBR: 53 │

└───┬──────┘

 │ SM0.0 ADD_I───┐

34 ├─┤ ├──┤EN │

 │ │ │

 │ VW3304┤IN1 OUT├AC0

 │ VW3306┤IN2 │

 │ └───────┘

 │ SM1.1 61

35 ├─┤ ├─┬───────────────┬───────────────────────┬────────────(CALL)

 │ │ │ │

 │V3304.7│ │ │

 ├─┤ ├─┘ │ └────────────(CRET)

 │ │

 │ VW3306 K126 │

 ├───────┤ >= W ├────────┤

 │ │

 │V3306.7 │

 ├─┤ ├─────────────────┘

 │

	 │ K3 VB3303 MOV_W───┐

36 ├───────┤ == B ├────────┬───────────────────────┬────────────┤EN │

 │ │ │ │ │

 │ │ │ VW3292┤IN OUT├AC1

 │ │ │ │ │

 │ │ │ └───────┘

 │ │ │ MOV_DW──┐

 │ │ └────────────┤EN │

 │ │ │ │

 │ │ &VB0┤IN OUT├AC2

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ └─┤NOT├─────────────────┬────────────┤EN │

 │ │ │ │

 │ │ VW3294┤IN OUT├AC1

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_DW──┐

 │ └────────────┤EN │

 │ │ │

 │ VD3296┤IN OUT├AC2

 │ │ │

 │ └───────┘

 │ AC0 AC1 61

37 ├───────┤ >= W ├────────────────────────────────┬────────────(CALL)

 │ │

 │ │

 │ └────────────(CRET)

	
	// Check to see if the max. memory limit has been exceeded.

SBR
53

LD
SM0.0

MOVW
VW3304, AC0
// get the start_word value

+I
VW3306, AC0
// ...plus the word_count

LD
SM1.1
// if (overflow) or

O
V3304.7
// (start_word < 0) or

OW>=
VW3306, 126
// (word_count > 125) or

O
V3306.7
// (word_count < 0)

CALL
61
// build error response

CRET

// return

LDB=
3,VB3303
// if function 3 (V memory)

MOVW
VW3292, AC1
// get max. V memory size

MOVD
&VB0, AC2
// source_pointer = V memory

NOT

// else

MOVW
VW3294, AC1
// get max. AI word size

MOVD
VD3296, AC2
// source_pointer = AI memory

LDW>= AC0, AC1
// if start_word + word_count >= memory size

CALL
61
// build error response

CRET

// return

	
	// The request is OK so get the start_word, double it for a byte offset and add it to the source_pointer.

// Point the response buffer and move the data there.

	 │

 │ SM0.0 ADD_I───┐

38 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ VW3304┤IN1 OUT├AC2

 │ │ AC2┤IN2 │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3304┤IN1 OUT├AC2

 │ │ AC2┤IN2 │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3306┤IN1 OUT├AC1

 │ │ VW3306┤IN2 │

 │ │ └───────┘

 │ │ MOV_B───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC1┤IN OUT├VB3304

 │ │ │ │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K3┤IN1 OUT├AC1

 │ │ AC1┤IN2 │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC1┤IN OUT├VW3300

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3306┤IN OUT├AC1

 │ │ │ │

 │ │ └───────┘

 │ │ BLKMOV_W┐

 │ └────────────┤EN │

 │ │ │

 │ *AC2┤IN OUT├VW3305

 │ AC1┤N │

 │ └───────┘

 │

39 ├──(RET)

 │

	
	LD
SM0.0

+I
VW3304, AC2
// add start_word to source_pointer

+I
VW3304, AC2
// ...start_word * 2 to source_pointer

	
	MOVW
VW3306, AC1
// get the word count

+I
VW3306, AC1
// ...times two for a byte count

MOVB
AC1, VB3304
// ...store byte count of response

+I
3, AC1
// add overhead bytes

MOVW
AC1,VW3300
// ...store response buffer size

MOVW
VW3306, AC1
// get the word count again

BMW
*AC2, VW3305, AC1
// copy data from source to buffer

RET

// return

	
	// Subroutine 54

//

// This subroutine supports Modbus function 5 to force a single output either on or off.

//

// The format for the request is:

//

// addr 05 output_bit (MSB,LSB) data (FF00 or 0000)

//

// The data value FF00 turns on the output, the value 0000 turns off the output. Any other data values

// result in no action being taken.

//

// The response message is to retransmit the request message.

	┌──────────┐

│ SBR: 54 │

└───┬──────┘

 │ SM0.0 INC_W───┐

41 ├─┤ ├──┤EN │

 │ │ │

 │ VW3304┤IN OUT├AC0

 │ │ │

 │ └───────┘

 │ AC0 VW3290 61

42 ├───────┤ >= W ├────────┬───────────────────────┬────────────(CALL)

 │ │ │

 │V3304.7 │ │

 ├─┤ ├─────────────────┘ └────────────(CRET)

 │

 │ VW3306 K0 MOV_W───┐

43 ├───────┤ == W ├────────┬─┤NOT├─────────────────┬────────────┤EN │

 │ │ │ │ │

 │ VW3306 KHFF00 │ │ K6┤IN OUT├VW3300

 ├───────┤ == W ├────────┘ │ │ │

 │ │ └───────┘

 │ │

 │ └────────────(CRET)

	
	SBR
54

LD
SM0.0

MOVW
VW3304, AC0
// get output_bit

INCW
AC0
// ...and fix it for check

LDW>=
AC0, VW3290
// if (output_bit > max_IR_number) or

O
V3304.7
// (output_bit < 0)

CALL
61
// build error response

CRET

// return

	
	// Check to see if the data is either FF00 or 0000. If the data is not one of these values then no action

// is taken except to echo the request back to the master.

LDW=
VW3306, 0
// if (data != 0) or

OW=
VW3306, 16#FF00
// (data != FF00)

NOT

MOVW
6, VW3300
// set response length

CRET

// return

	
	// Determine which byte of the outputs and which bit of the byte to modify.

// This is done by dividing the output bit by eight. The quotient is the byte offset, and the remainder

// is the bit number.

//

// After the divide, the value in VW3560 is the remainder (bit number), and

// the value in VW3562 is the quotient (offset into outputs).

	 │

 │ SM0.0 DIV─────┐

44 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ VW3304┤IN1 OUT├VD3560

 │ │ VW3574┤IN2 │

 │ │ └───────┘

 │ │ MOV_DW──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ &QB0┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3562┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ MOV_B───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ *AC3┤IN OUT├AC2

 │ │ │ │

 │ │ └───────┘

 │ │ SHL_W───┐

 │ └────────────┤EN │

 │ │ │

 │ K1┤IN OUT├AC1

 │ VB3561┤N │

 │ └───────┘

	
	LD
SM0.0

MOVW
VW3304, VW3562
// get the output_bit

DIV
VW3574, VD3560
// output_bit / 8

MOVD
&QB0, AC3
// point to outputs

+I
VW3562, AC3
// offset point to correct byte

MOVB
*AC3, AC2
// get the output byte

MOVW
1, AC1
// create a mask

SLW
AC1, VB3561
// ...for the proper bit

	 │ VB3306 K0 INV_W───┐

45 ├───────┤ == B ├────────┬───────────────────────┬────────────┤EN │

 │ │ │ │ │

 │ │ │ AC1┤IN OUT├AC1

 │ │ │ │ │

 │ │ │ └───────┘

 │ │ │ WAND_W──┐

 │ │ └────────────┤EN │

 │ │ │ │

 │ │ AC1┤IN1 OUT├AC2

 │ │ AC2┤IN2 │

 │ │ └───────┘

 │ │ WOR_W───┐

 │ └─┤NOT├──────────────────────────────┤EN │

 │ │ │

 │ AC1┤IN1 OUT├AC2

 │ AC2┤IN2 │

 │ └───────┘

	
	LDB=
VB3306, 0
// if data == 0

INVW
AC1
// make a clearing mask

ANDW
AC1, AC2
// clear the bit

NOT

// else

ORW
AC1, AC2
// set the bit

	 │ SM0.0 MOV_B───┐

46 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ AC2┤IN OUT├*AC3

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ └────────────┤EN │

 │ │ │

 │ K6┤IN OUT├VW3300

 │ │ │

 │ └───────┘

 │

47 ├──(RET)

 │

	
	LD
SM0.0

MOVB
AC2, *AC3
// restore the output byte

MOVW
6, VW3300
// set response length

RET

	
	// Subroutine 55

//

// This subroutine supports Modbus function 6 by writing to a single holding register in the PLC.

// The holding registers are considered to be V memory in this implementation.

//

// The format for the request is:

//

// addr 06 start_word (MSB,LSB) data (MSB,LSB)

//

// The start_word is the first word requested (zero based).

// The data is the word to be written to the PLC.

//

// The format for the response is the same as the request:

//

// addr 06 start_word (MSB,LSB) data (MSB,LSB)

	┌──────────┐

│ SBR: 55 │

└───┬──────┘

 │ SM0.0 DEC_W───┐

49 ├─┤ ├──┤EN │

 │ │ │

 │ VW3292┤IN OUT├AC0

 │ │ │

 │ └───────┘

 │ VW3304 AC0 61

50 ├───────┤ >= W ├────────┬───────────────────────┬────────────(CALL)

 │ │ │

 │V3304.7 │ │

 ├─┤ ├─────────────────┘ └────────────(CRET)

 │

	
	// Check to see if the max. memory limit has been exceeded.

SBR
55

LD
SM0.0

MOVW
VW3292, AC0
// get memory size + 1 value

DECW
AC0
// ...and make it just memory size

LDW>=
VW3304, AC0
// if (start_word >= memory size) or

O
V3304.7
// (start_word < 0)

CALL
61
// build error response

CRET

// return

	
	// The request is OK so get the start_word, double it for a byte offset, and

// add it to the source_pointer. Move the data from the request to V memory.

	 │ SM0.0 MOV_DW──┐

51 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ &VB0┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3304┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3304┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3306┤IN OUT├*AC3

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ └────────────┤EN │

 │ │ │

 │ K6┤IN OUT├VW3300

 │ │ │

 │ └───────┘

 │

52 ├──(RET)

 │

	
	LD
SM0.0

MOVD
&VB0, AC3
// source_pointer = V memory

+I
VW3304, AC3
// add in the offset...

+I
VW3304, AC3
// ...twice for a byte offset

MOVW
VW3306, *AC3
// store data to V memory

MOVW
6, VW3300
// set response length

RET

// return

	
	// Subroutine 56

//

// This subroutine supports Modbus function 15 (forcing multiple coils). The outputs are packed

// eight bits to a byte. The LSBit of the first byte of data is written to the start_bit location.

// Subsequent bits are written to consecutive locations.

//

	
	// NOTE:
This implementation will return an error if the start_bit and the
bit_count values are not

//
multiples of eight. It is just too complicated in STL or LAD to handle starting on any bit.

//

// The format for the request is:

//

// addr 0F start_bit (MSB,LSB) bit_count (MSB,LSB) byte_count data

//

// The start_bit is the first output to be written and is the LSBit of the first data byte.

// The bit_count is the number of outputs to be written.

// The byte_count is the number of data bytes.

//

// The format for the response is:

//

// addr 0F start_bit(MSB,LSB) bit_count(MSB,LSB)

	┌──────────┐

│ SBR: 56 │

└───┬──────┘

 │ SM0.0 ADD_I───┐

54 ├─┤ ├──┤EN │

 │ │ │

 │ VW3304┤IN1 OUT├AC0

 │ VW3306┤IN2 │

 │ └───────┘

 │ SM1.1 61

55 ├─┤ ├─┬───────────────┬───────────────────────┬────────────(CALL)

 │ │ │ │

 │V3304.7│ │ │

 ├─┤ ├─┤ │ └────────────(CRET)

 │ │ │

 │V3306.7│ │

 ├─┤ ├─┘ │

 │ │

 │ AC0 VW3290 │

 ├───────┤ >= W ├────────┘

 │

	
	// Check to see if the max. number of outputs has been exceeded.

SBR
56

LD
SM0.0

MOVW
VW3304, AC0
// get the start_bit value

+I
VW3306, AC0
// ...plus the bit_count

LD
SM1.1
// if (overflow) or

O
V3304.7
// (start_bit < 0) or

O
V3306.7
// (bit_count < 0) or

OW>=
AC0, VW3290
// (last_address > max_IR)

CALL
61
// build error response

CRET

// return

	
	// Determine the byte and bit offset into the output IR, and the full and partial bytes to be written.

//

// After the divide, the value in VW3560 is the remainder (shift count), and

// the value in VW3562 is the quotient (byte offset into outputs).

//

// After the divide, the value in VW3564 is the remainder, and the value in

// VW3566 is the number of full bytes to be written.

	 │ SM0.0 DIV─────┐

56 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ VW3304┤IN1 OUT├VD3560

 │ │ VW3574┤IN2 │

 │ │ └───────┘

 │ │ DIV─────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3306┤IN1 OUT├VD3564

 │ │ VW3574┤IN2 │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ └────────────┤EN │

 │ │ │

 │ VW3566┤IN1 OUT├AC0

 │ K9┤IN2 │

 │ └───────┘

	
	LD
SM0.0

MOVW
VW3304, VW3562
// get the start_bit value

DIV
VW3574, VD3560
// start_bit / 8

MOVW
VW3306, VW3566
// get the bit_count

DIV
VW3574, VD3564
// bit_count / 8

MOVW
VW3566, AC0
// get (bit_count / 8)

+I
9, AC0
// ...plus 9 bytes of overhead

	
	// Make sure that the host sent enough data with the request. The buffer length

// should be equal to the (bit_count / 8) + 9 bytes of overhead.

	 │ VB3301 AC0 61

57 ├───────┤ == B ├──────────┤NOT├─────────────────┬────────────(CALL)

 │ │

 │ │

 │ └────────────(CRET)

 │

	
	LDB=
VB3301, AC0
// if (calculated length (received length)

NOT

CALL
61
// show an error

CRET

// return

	
	// Determine if we are dealing with a "nice" frame where the start_bit is the first bit of a byte and

// the bit_count is a whole number of bytes. If this is not the case, return an error to the host.

	 │ VB3561 K0 VB3565 K0 MOV_DW──┐

58 ├───────┤ == B ├────────────────┤ == B ├────────┬────────────┤EN │

 │ │ │ │

 │ │ &QB0┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3562┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ BLKMOV_B┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VB3309┤IN OUT├*AC3

 │ │ VB3567┤N │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K6┤IN OUT├VW3300

 │ │ │ │

 │ │ └───────┘

 │ │

 │ └────────────(CRET)

	
	LDB=
VB3561, 0
// if (start_bit is bit zero of the byte) and

AB=
VB3565, 0
// (whole bytes = TRUE)

MOVD
&QB0, AC3
// point to outputs

+I
VW3562, AC3
// add offset to starting output

BMB
VB3309, *AC3, VB3567
// copy request data to outputs

MOVW
6, VW3300
// set response length

CRET

// return

	
	// This was not a nice frame so take the easy way out and abort the request.

	 │ SM0.0 61

59 ├─┤ ├──(CALL)

 │

 │

60 ├──(RET)

 │

	
	LD
SM0.0
// else

CALL
61
// show an error

RET

// return

	
	// Subroutine 57

//

// This subroutine supports Modbus function 16 (writing up to 60 holding registers to the PLC).

// The holding registers are considered to be V memory in this implementation.

//

// NOTE:
The max. value of 60 registers (120 bytes) is a limitation noted in the Modbus specification.

//

// The format for the request is:

// addr 10 start_word (MSB,LSB) word_count (MSB,LSB) byte_count data…

//

// The format for the response is the same as the request:

// addr 10 start_word (MSB,LSB) word_count (MSB,LSB)

	┌──────────┐

│ SBR: 57 │

└───┬──────┘

 │ SM0.0 ADD_I───┐

62 ├─┤ ├──┤EN │

 │ │ │

 │ VW3304┤IN1 OUT├AC0

 │ VW3306┤IN2 │

 │ └───────┘

 │ SM1.1 61

63 ├─┤ ├─┬───────────────┬───────────────────────┬────────────(CALL)

 │ │ │ │

 │V3304.7│ │ │

 ├─┤ ├─┤ │ └────────────(CRET)

 │ │ │

 │V3306.7│ │

 ├─┤ ├─┘ │

 │ │

 │ AC0 VW3292 │

 ├───────┤ >= W ├────────┘

 │

	
	// Calculate the last word address requested by adding the word_count to the start_word.

// If this last address is greater than the max. V memory address available, then return an error.

SBR
57

LD
SM0.0

MOVW
VW3304, AC0
// get the start_word

+I
VW3306, AC0
// ...plus word_count

LD
SM1.1
// if (overflow) or

O
V3304.7
// (start_word < 0) or

O
V3306.7
// (word_count < 0) or

OW>=
AC0, VW3292
// (last address >= memory size)

CALL
61
// build error response

CRET

// return

	
	// Compare the number of bytes received to the word_count from the message

// to be sure that we received enough data bytes. The receive byte_count

// should equal the (word_count * 2) + 9 overhead bytes. Also verify that the

// word count is no greater than 60 (120 bytes), the max allowed by the function.

//

// Also verify that the word_count * 2 is equal to the byte_count. It is a little

// redundant to double check all of these fields, but we should be complete.

	 │ SM0.0 SHL_W───┐

64 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ VW3306┤IN OUT├AC0

 │ │ K1┤N │

 │ │ └───────┘

 │ │ SUB_I───┐

 │ └────────────┤EN │

 │ │ │

 │ VW3300┤IN1 OUT├VW3300

 │ K9┤IN2 │

 │ └───────┘

 │ VW3300 AC0 AC0 VB3308 61

65 ├───────┤ == W ├────────────────┤ == B ├──────────┤NOT├───┬──(CALL)

 │ │

 │ AC0 K121 │

 ├───────┤ >= W ├──┴──(CRET)

 │

	
	LD
SM0.0

MOVW
VW3306, AC0
// get the word_count

SLW
AC0, 1
// word_count * 2

-I
9, VW3300
// receive byte_count - 9

LDW=
VW3300, AC0
// if (word_count * 2 != receive count - 9) or

AB=
AC0, VB3308
// (word_count * 2 != byte_count) or

NOT

OW>=
AC0, 121
// (count > 60 words + overhead)

CALL
61
// build error response

CRET

// return

	
	// The request is OK so get the start_word, double it for a byte offset and then

// add it to the source_pointer. Move the data from the request to V memory.

	 │ SM0.0 MOV_DW──┐

66 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ &VB0┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

	 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3304┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3304┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ BLKMOV_W┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3309┤IN OUT├*AC3

 │ │ VB3307┤N │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ └────────────┤EN │

 │ │ │

 │ K6┤IN OUT├VW3300

 │ │ │

 │ └───────┘

 │

67 ├──(RET)

 │

	
	LD
SM0.0

MOVD
&VB0, AC3
// source_pointer = V memory

+I
VW3304, AC3
// add in the offset...

+I
VW3304, AC3
// ...twice for a byte offset

BMW
VW3309, *AC3, VB3307
// store data to V memory

MOVW
6, VW3300
// set response length

RET

// return

	
	// Subroutine 61

//

// This subroutine sets up the response buffer for Modbus exception code two.

	┌──────────┐

│ SBR: 61 │

└───┬──────┘

 │ SM0.0 MOV_W───┐

69 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ K3┤IN OUT├VW3300

 │ │ │ │

 │ │ └───────┘

 │ │ WOR_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ KH80┤IN1 OUT├VW3302

 │ │ VW3302┤IN2 │

 │ │ └───────┘

	 │ │ MOV_B───┐

 │ └────────────┤EN │

 │ │ │

 │ K2┤IN OUT├VB3304

 │ │ │

 │ └───────┘

 │

70 ├──(RET)

 │

	
	SBR
61

LD
SM0.0

MOVW
3, VW3300
// load length for error response

ORW
16#0080, VW3302
// set the MSBit of function to show error

MOVB
2, VB3304
// load exception code

RET

	
	// Subroutine 62

//

// This subroutine generates the CRC table used to calculate the CRC values in the message.

//

// The polynomial used is : x16 + x15 + x2 + 1

	┌──────────┐

│ SBR: 62 │

└───┬──────┘

 │ SM0.0 MOV_DW──┐

72 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ &VB3580┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_DW──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K0┤IN OUT├AC2

 │ │ │ │

 │ │ └───────┘

 │ │ FOR─────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3560┤IDX │

 │ │ │ │

 │ │ K1┤ITL │

 │ │ │ │

 │ │ K256┤FNL │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC2┤IN OUT├AC0

 │ │ │ │

 │ │ └───────┘

	 │ │ FOR─────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3562┤IDX │

 │ │ │ │

 │ │ K1┤ITL │

 │ │ │ │

 │ │ K8┤FNL │

 │ │ └───────┘

 │ │ SHR_W───┐

 │ └────────────┤EN │

 │ │ │

 │ AC0┤IN OUT├AC0

 │ K1┤N │

 │ └───────┘

 │ SM1.1 WXOR_W──┐

73 ├─┤ ├──┤EN │

 │ │ │

 │ KHA001┤IN1 OUT├AC0

 │ AC0┤IN2 │

 │ └───────┘

 │

74 ├──(NEXT)

 │

 │ SM0.0 INC_W───┐

75 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ AC2┤IN OUT├AC2

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC0┤IN OUT├*AC3

 │ │ │ │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K2┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │

 │ └────────────(WDR)

 │

 │

76 ├──(NEXT)

 │

 │

77 ├──(RET)

 │

	
	SBR
62

LD
SM0.0

MOVD
&VB3580, AC3
// load table_pointer

MOVD
0, AC2
// load index

FOR
VW3560, 1, 256
// for all possible byte values

MOVW
AC2, AC0
// value = index

FOR
VW3562, 1, 8
// for eight bits per byte

SRW
AC0, 1
// shift out the LSBit

	
	LD
SM1.1
// if bit shifted out is a one

XORW
16#A001, AC0
// XOR crc with value

NEXT

// end for

LD
SM0.0

INCW
AC2
// increment index

MOVW
AC0, *AC3
// store table word

+I
2, AC3
// increment table pointer

WDR

// reset the watchdog

NEXT

// end for

RET

	
	// Subroutine 63

//

// This subroutine calculates the CRC value for the message using the faster

// table lookup method.

//

// Inputs :
AC0 message length

//
AC1 pointer to message

//

// Outputs:
AC2 CRC value in LSWord

	┌──────────┐

│ SBR: 63 │

└───┬──────┘

 │ SM0.0

79 ├─┤ ├───┬────────────(WDR)

 │ │

 │ │ MOV_DW──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ KH8000000┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_DW──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ KHFFFF┤IN OUT├AC2

 │ │ │ │

 │ │ └───────┘

 │ │ FOR─────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3560┤IDX │

 │ │ │ │

 │ │ K1┤ITL │

 │ │ │ │

 │ │ AC0┤FNL │

 │ │ └───────┘

 │ │ MOV_B───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ *AC1┤IN OUT├AC3

 │ │ │ │

 │ │ └───────┘

	 │ │ WXOR_W──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC2┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ WAND_W──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ KHFF┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ SHL_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC3┤IN OUT├AC3

 │ │ K1┤N │

 │ │ └───────┘

 │ │ ADD_I───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K3580┤IN1 OUT├AC3

 │ │ AC3┤IN2 │

 │ │ └───────┘

 │ │ SWAP────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ AC2┤IN │

 │ │ │ │

 │ │ └───────┘

 │ │ WAND_W──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ KHFF┤IN1 OUT├AC2

 │ │ AC2┤IN2 │

 │ │ └───────┘

 │ │ WXOR_W──┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ *AC3┤IN1 OUT├AC2

 │ │ AC2┤IN2 │

 │ │ └───────┘

 │ │ INC_W───┐

 │ └────────────┤EN │

 │ │ │

 │ AC1┤IN OUT├AC1

 │ │ │

 │ └───────┘

 │

80 ├──(NEXT)

 │

 │ SWAP────┐

81 ├───┬────────────┤EN │

 │ │ │ │

 │ │ AC2┤IN │

 │ │ │ │

 │ │ └───────┘

 │ │

 │ └────────────(WDR)

 │

 │

82 ├──(RET)

 │

	
	SBR
63

LD
SM0.0

WDR

// reset the watchdog timer

MOVD
16#08000000, AC3
// clear temporary register

MOVD
16#0000FFFF, AC2
// initialize the CRC value to 0xFFFF

FOR
VW3560, 1, AC0
// for all bytes in the message

MOVB
*AC1, AC3
// get the message byte

XORW
AC2, AC3
// XOR data with CRC

ANDW
16#00FF, AC3
// keep only the LSByte

SLW
AC3, 1
// convert to an index into word table

+I
3580, AC3
// add start of table address (VB3580)

SWAP
AC2
// swap bytes of CRC

ANDW
16#00FF, AC2
// keep only the LSByte

XORW
*AC3, AC2
// OR table value with CRC

INCW
AC1
// point to the next message byte

NEXT

// end for

SWAP
AC2
// swap bytes in CRC before returning

WDR

// reset the watchdog timer

RET

	Interrupt routines
	

	
	// INT 120

//

// This interrupt routine will execute if the quiet line timer expires. When this happens, attach the main

// character receive interrupt to the port since the next character we receive should be the start of a

// message.

	┌──────────┐

│ INT:120 │

└───┬──────┘

 │ SM0.0 DTCH────┐

84 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ 10┤EVT │

 │ │ │ │

 │ │ └───────┘

 │ │ ATCH────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K122┤INT │

 │ │ K8┤EVT │

 │ │ └───────┘

 │ │ MOV_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K0┤IN OUT├VW3300

 │ │ │ │

 │ │ └───────┘

 │ │ MOV_DW──┐

 │ └────────────┤EN │

 │ │ │

 │ &VB3302┤IN OUT├VD3570

 │ │ │

 │ └───────┘

 │

85 ├──(RETI)

 │

	

	
	INT
120

LD
SM0.0

DTCH
10
// disable quiet line timer

ATCH
122, 8
// attach receive routine to comm port

MOVW
0, VW3300
// set receive count to zero

MOVD
&VB3302, VD3570
// set pointer to receive buffer

RETI

	
	// INT 121

//

// This interrupt routine handles the serial port interrupts while looking for a quiet

// line. If there is a character received during the quiet line search the action is to

// restart the quiet line timer.

	┌──────────┐

│ INT:121 │

└───┬──────┘

 │ SM0.0 ATCH────┐

87 ├─┤ ├──┤EN │

 │ │ │

 │ K120┤INT │

 │ K10┤EVT │

 │ └───────┘

 │

88 ├──(RETI)

 │

	

	
	INT
121

LD
SM0.0

ATCH
120,10
// re-enable the quiet line timer

RETI

	
	// INT 122

//

// This routine will receive the first byte of the message after finding the

// quiet line time. The first byte of the message will be the address. Check

// to see if this is a request to this address. If it is, attach INT 123 to receive the entire message.

// If the message is not for this address then go back to looking for a quiet line time.

//

// NOTE:
The broadcast address is not supported in this implementation as

//
it would add extra code. If this feature is desired, this INT would

//
have to be modified along with all of the function handlers, since

//
the broadcast address is not supported by all functions.

	┌──────────┐

│ INT:122 │

└───┬──────┘

 │ SM3.0 ATCH────┐

90 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ K120┤INT │

 │ │ K10┤EVT │

 │ │ └───────┘

 │ │ ATCH────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K121┤INT │

 │ │ K8┤EVT │

 │ │ └───────┘

 │ │

 │ └────────────(CRETI)

 │

	

	
	INT
122

LD
SM3.0
// if (parity error)

ATCH
120, 10
// start search for quiet line

ATCH
121, 8
// INT 1 if we get a character

CRETI

// return

	 │ SMW2 VB4095 MOV_B───┐

91 ├───────┤ == B ├────────────────────────────────┬────────────┤EN │

 │ │ │ │

 │ │ SMB2┤IN OUT *VD3570

 │ │ │ │

 │ │ └───────┘

 │ │ INC_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3572┤IN OUT├VW3572

 │ │ │ │

 │ │ └───────┘

 │ │ INC_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3300┤IN OUT├VW3300

 │ │ │ │

 │ │ └───────┘

 │ │ ATCH────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K123┤INT │

 │ │ K8┤EVT │

 │ │ └───────┘

 │ │ ATCH────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ K124┤INT │

 │ │ K10┤EVT │

 │ │ └───────┘

 │ │

 │ └────────────(CRETI)

	

	
	

// else (parity is OK)

LDB=
SMB2, VB4095
// if (address = my address)

MOVB
SMB2, *VD3570
// store address in buffer

INCW
VW3572
// increment buffer pointer

INCW
VW3300
// increment receive byte counter

ATCH
123, 8
// receive rest of message

ATCH
124, 10
// end receive if timeout

CRETI

// return

	 │ SM0.0 ATCH────┐

92 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ K120┤INT │

 │ │ K10┤EVT │

 │ │ └───────┘

 │ │ ATCH────┐

 │ └────────────┤EN │

 │ │ │

 │ K121┤INT │

 │ K8┤EVT │

 │ └───────┘

 │

93 ├──(RETI)

 │

	

	
	LD
SM0.0
// else (address != my address)

ATCH
120,10
// re-enable the quiet line timer

ATCH
121,8
// INT 121 if we get a character

RETI

	
	// INT 123

//

// This is the main character interrupt service routine. Characters are received, checked for

// parity errors and then placed in the comm buffer. The byte count is incremented for each character.

// If the number of bytes received is greater than 256 then the receive is aborted.

	┌──────────┐

│ INT:123 │

└───┬──────┘

 │ SM0.0 ATCH────┐

95 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ K124┤INT │

 │ │ K10┤EVT │

 │ │ └───────┘

 │ │ MOV_B───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ SMB2┤IN OUT *VD3570

 │ │ │ │

 │ │ └───────┘

 │ │ INC_W───┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ VW3572┤IN OUT├VW3572

 │ │ │ │

 │ │ └───────┘

 │ │ INC_W───┐

 │ └────────────┤EN │

 │ │ │

 │ VW3300┤IN OUT├VW3300

 │ │ │

 │ └───────┘

	

	
	 │ SM3.0 ATCH────┐

96 ├─┤ ├─┬───────────────────────────────────────┬────────────┤EN │

 │ │ │ │ │

 │V3300.0│ │ K120┤INT │

 ├─┤ ├─┘ │ K10┤EVT │

 │ │ └───────┘

 │ │ ATCH────┐

 │ └────────────┤EN │

 │ │ │

 │ K121┤INT │

 │ K8┤EVT │

 │ └───────┘

 │

97 ├──(RETI)

 │

	
	INT
123

LD
SM0.0

ATCH
124, 10
// message complete on next timeout

MOVB
SMB2, *VD3570
// store message byte in buffer

INCW
VW3572
// increment buffer pointer

INCW
VW3300
// increment receive byte counter

LD
SM3.0
// if (parity error) or

O
V3300.0
// (buffer overflow)

ATCH
120, 10
// start search for quiet line

ATCH
121, 8
// INT 1 if we get a character

RETI

	
	// INT 124

//

// This interrupt routine will execute when a message has been received and we have found another

// quiet line meaning that the request is compete. The action here is to disable the quiet line timer,

// disable the port interrupt, and set a flag for the background scan to process the message.

	┌──────────┐

│ INT:124 │

└───┬──────┘

 │ SM0.0 DTCH────┐

99 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ 10┤EVT │

 │ │ │ │

 │ │ └───────┘

 │ │ DTCH────┐

 │ ├────────────┤EN │

 │ │ │ │

 │ │ 8┤EVT │

 │ │ │ │

 │ │ └───────┘

 │ │ M31.7 K1

 │ └────────────(S)

 │

 │

100 ├──(RETI)

 │

	

	
	INT
124

LD
SM0.0

DTCH
10
// disable quiet line timer

DTCH
8
// disable port interrupt

S
M31.7, 1
// flag background

RETI

	
	// INT 125

//

// This interrupt routine will execute when the response has been completely transmitted back to

// the master. Reset the interrupt system to again search for a quiet line and the start of a new request.

	┌──────────┐

│ INT:125 │

└───┬──────┘

 │ SM0.0 ATCH────┐

102 ├─┤ ├───┬────────────┤EN │

 │ │ │ │

 │ │ K120┤INT │

 │ │ K10┤EVT │

 │ │ └───────┘

 │ │ ATCH────┐

 │ └────────────┤EN │

 │ │ │

 │ K121┤INT │

 │ K8┤EVT │

 │ └───────┘

 │

103 ├──(RETI)

 │

	

	
	INT
125

LD
SM0.0

ATCH
120,10
// start search for quiet line

ATCH
121,8
// INT 1 if we get a character

RETI

Conversion Notes

To Convert from IEC STL to S7-Micro/DOS STL:

 (Add a ‘K’ before all non-Hex numerical constants (i.e. 4 (K4)
 (Replace ‘16#’ with ‘KH’ for all Hex constants (i.e. 16#FF (KHFF)
 (Commas denote field divisions. Use arrow or TAB keys to toggle between fields.

 (To convert an S7-Micro/DOS STL program to LAD form, every network must begin with the word ‘NETWORK’ and a number. Each network in this Application Tip program is designated by a number on the ladder diagram. Use the INSNW command under the EDIT menu to enter a new network. The MEND, RET, RETI, LBL, SBR, and INT commands each receive their own networks.

 (Line-Comments denoted by ‘//’ are not possible with S7-Micro/DOS, but Network-Comments are possible.

General Notes
The SIMATIC S7-200 Application Tips are provided to give users of the S7-200 some indication as to how, from the view of programming technique, certain tasks can be solved with this controller. These instructions do not purport to cover all details or variations in equipment, nor do they provide for every possible contingency. Use of the S7-200 Application Tips is free.

Siemens reserves the right to make changes in specifications shown herein or make improvements at any time without notice or obligation. It does not relieve the user of responsibility to use sound practices in application, installation, operation, and maintenance of the equipment purchased. Should a conflict arise between the general information contained in this publication, the contents of drawings or supplementary material, or both, the latter shall take precedence.

Siemens is not liable, for whatever legal reason, for damages or personal injury resulting from the use of the application tips.

All rights reserved. Any form of duplication or distribution, including excerpts, is only permitted with express authorization by SIEMENS.
 SIMATIC

S7-200 Tips

Modbus Master

RS-485 Communication

S7- 214 Modbus Slaves

Copyright symbol 211 \f "Symbol" \s 101997 by SIEMENS
page 1 / 43
74549843S7241e[1]
Status: 06/97

Version 1.1

SIMATIC S7-200 customers have free use of the application tips. These tips are only a general approach to using the S7-200 with various applications. Your specific application may be different. It is your responsibility to use the SIMATIC S7-200 properly in your applications.

